Марьин С. Б., Щербатюк Г. А., Кириллин В. Д., Пак М. И. S. B. Maryin, G. A. Scherbatyuk, V. D. Kirilin, M. I. Pak

ИССЛЕДОВАНИЕ ПРОЦЕССА РАЗДАЧИ СРЕДНЕЙ ЧАСТИ ТРУБНОЙ ЗАГОТОВКИ С ПОДПОРОМ

INVESTIGATION OF DISTRIBUTION PROCESS OF THE MIDDLE PART OF THE PIPE BILLET WITH BACKUP

Марьин Сергей Борисович – доктор технических наук, заведующий кафедрой «Авиастроение» Комсомольского-на-Амуре государственного университета (Россия, Комсомольск-на-Амуре). E-mail: maryinsb@mail.ru.

Sergey B. Maryin – D.Sc. in Engineering, Head of Aircraft Industry Department, Komsomolsk-na-Amure State University (Russia, Komsomolsk-on-Amur). E-mail: maryinsb@mail.ru.

Щербатюк Галина Анатольевна – кандидат физико-математических наук, доцент кафедры «Авиастроение» Комсомольского-на-Амуре государственного университета (Россия, Комсомольск-на-Амуре). E-mail: scherbatyuk.ga@yandex.ru.

Galina A. Scherbatyuk – PhD in Physics and Mathematics, Associate Professor, Aircraft Industry Department, Komsomolsk-na-Amure State University (Russia, Komsomolsk-on-Amur). E-mail: scherbatyuk.ga@yandex.ru.

Кириллин Вячеслав Дмитриевич – студент кафедры «Авиастроение» Комсомольского-на-Амуре государственного университета (Россия, Комсомольск-на-Амуре). E-mail: kirilinslavik@gmail.ru.

Vyacheslav D. Kirilin – Student, Aircraft Industry Department, Komsomolsk-na-Amure State University (Russia, Komsomolsk-on-Amur); 681013, Khabarovsk Territory, Komsomolsk-on-Amur, 27 Lenin str. E-mail: kirilin-slavik@gmail.ru.

Пак Мария Ивановна – студент кафедры «Авиастроение» Комсомольского-на-Амуре государственного университета (Россия, Комсомольск-на-Амуре). E-mail: masha.pak.98@mail.ru.

Maria I. Pak – Student, Aircraft Industry Department, Komsomolsk-na-Amure State University (Russia, Komsomolsk-on-Amur); 681013, Khabarovsk Territory, Komsomolsk-on-Amur, 27 Lenin str. E-mail: masha.pak.98@mail.ru.

Аннотация. В статье исследован процесс изготовления муфты термомеханического соединения для гидрогазовых систем летательных аппаратов. В качестве материала для изготовления элементов труб летательных аппаратов использовались алюминиевые сплавы АМг, АМц, титановый сплав ОТ-4 и сталь 12X18H10T.

Summary. The article investigates the process of manufacturing a thermomechanical coupling by a distribution method with a backup. Aluminum alloys AMg, AMc, titanium alloy OT-4 and steel 12X18N10T were used as the material for the manufacture of aircraft tube elements.

Ключевые слова: трубная заготовка, скорость перемещения, гидрогазовая система, раздача, герметичность, осесимметричная деталь, жёсткая матрица.

Key words: pipe billet, speed of movement, hydro-gas system, distribution, tightness, axisymmetric part, rigid matrix.

УДК 621.98.044.7

В гидрогазовых системах летательных аппаратов широко применяются осесимметричные детали из трубных заготовок в виде патрубков, муфт, законцовок, изготавливаемых способом раздачи внутренним давлением наполнителя [2]. В качестве материала для изготовления элементов труб летательных аппаратов широко используют алюминиевые сплавы АМг, АМц, титановый сплав ОТ-4 и сталь 12X18H10T [3]. К деталям трубопроводов предъявляются высокие эксплуатационные требования по прочности, точности и герметичности, однако такие дефекты, как утонение и волнистость стенок, возникающие в процессе их производства, значительно снижают работоспособность деталей. В таких условиях очень важной задачей является моделирование процесса изготовления деталей из трубных заготовок, что позволяет определить и оценить параметры напряжённо-деформированного состояния.

Постановка задачи. Штамп содержит жёсткую матрицу, установленную в жёстком корпусе, основание, пуансон. В матрице размещена трубная заготовка, внутри которой находится рабочее тело (эластомер).

Штамп работает следующим образом. Посредством перемещения ползуна пресса с усилием *P* перемещается пуансон. От пуансона усилие *P* передаётся через рабочее тело в зону деформирования трубной заготовки, в результате чего происходит раздача средней части трубы [5]. Затем пуансон поднимают вверх, производят разборку матрицы и выемку готовой детали с рабочим телом. На рис. 1 приведено устройство для раздачи трубной заготовки с подпором.

Трубная заготовка внутренним радиусом R_0 , толщиной стенки S (область I) помещается в жёсткую матрицу сложной конфигурации (область II). С наружной части трубы в полости матрицы (область III) размещается несжимаемая среда. На рис. 2 приведено меридиональное сечение с учётом осевой симметрии процесса.

Во внутренней части трубной заготовки (область IV) создаётся гидростатическое давление P [1]. При этом материал трубы деформируется, наружный радиус в средней части трубной заготовки изменяется до R_1 . В ходе деформирования заготовки I среда III создаёт противодавление и постепенно удаляется из полости матрицы II через зазор шириной 2d (см. рис. 2).

В данном случае имеется двухкомпонентная система: трубная заготовка I – несжимаемая среда III [4; 6; 7; 8].

Рис. 2. Схема деформирования трубной заготовки

Рассматриваем осесимметричное тело вращения. В эйлеровой системе координат исследуемый процесс описывается системой уравнений

$$\sigma_{ij,j} = 0; \ \sigma_{ij} - \sigma \delta_{ij} = 2\lambda \xi_{ij}; \ \lambda = \frac{T}{H} \\ T = T(\varepsilon, \xi^*, \theta), H = \sqrt{\xi_{ij} \xi_{ij}} \\ \xi_{ii} = 0, \xi_{ij} = \frac{1}{2} (V_{i,j} + V_{j,i})$$

$$(1)$$

Граничные условия задачи:

$$V_{1}|_{S_{1},S_{7}} = 0; V_{2}|_{S_{5},S_{8}} = 0; \ \sigma_{11}|_{S_{4}} = 0;$$

$$\sigma_{12}|_{S_{1},S_{4}} = 0; \ \sigma_{22}|_{S_{6}} = 0; \ \sigma_{21}|_{S_{6}} = 0;$$

$$\sigma_{22}|_{S_{2}} = -P.$$
(2)

Закон трения на контактных поверхностях S_3 и S_8 (см. рис. 2) примем в виде

$$\sigma_{21}|_{S_i} = -\psi_i \tau_S \frac{(v_{\rm CK})_i}{|v_1^*|}, \qquad i = 3,8,$$
(3)

где ψ_i – коэффициенты трения; ($v_{c\kappa}$)₃ и ($v_{c\kappa}$)₈ – скорости скольжения материала трубной заготовки относительно несжимаемой среды и матрицы соответственно; v_1^* – нормирующая скорость трубной заготовки.

Результаты решения для стальной заготовки. На рис. 3-5 представлены результаты расчёта параметров напряжённо-деформированного состояния для трубных заготовок согласно аналитическим зависимостям (1)-(3). При расчёте принималось: s = 2 мм, d = 3 мм, $R_0 = 21,5$ мм, $R_1 = 34$ мм, P = 70 МПа. Материал трубной заготовки – сталь 12X18H10T.

На рис. 3 представлены эпюры скоростей перемещений V_1 , V_2 по шагам. На начальной стадии деформирования трубной заготовки (см. рис. 3, *a*) минимум по скоростям V_2 наблюдается в торцевой части заготовки (поверхность S_8 на рис. 2), а максимальные значения скорости V_2 принимают в средней части трубной заготовки на поверхности S_2 (см. рис. 2), и они равны 1,26 мм/с.

Рис. 3. Эпюры скоростей перемещений V_1 , V_2 по стадиям деформирования заготовки (P = 70 МПа, d = 3 мм): а – начальная стадия деформирования; б – промежуточная стадия деформирования; в – конечная деформирования

На конечной стадии деформирования заготовки (см. рис. 3, e) скорости V_1 направлены в противоположную сторону к положительному направлению оси 1 и на поверхности S_4 (см. рис. 2) принимают максимальное значение, которое равно 1,33 мм/с.

Максимальные значения скоростей V_2 наблюдаются в средней части рассматриваемой области. Они равны: на промежуточной стадии деформирования заготовки (см. рис. 3, δ) 1,36 мм/с, на конечной стадии 2,5 мм/с.

Рис. 4. Эпюры нормальных напряжений σ_{11} , σ_{22} по стадиям деформирования заготовки (P = 70 МПа, d = 3 мм): а – начальная стадия деформирования; б – промежуточная стадия деформирования; в – конечная деформирования

На рис. 4 представлены эпюры нормальных напряжений σ_{11} и σ_{22} по шагам. В средней части рассматриваемой области σ_{11} переменные, причём на выходе из прямолинейного участка трубной заготовки имеем растягивающие напряжения у поверхности S_2 (см. рис. 2), вблизи внутренней стенки, в то время как у поверхности S_3 присутствуют сжимающие напряжения σ_{11} . Далее картина меняется, т.е. у поверхности S_2 имеем сжимающие напряжения σ_{11} , а на внешней стенке заготовки (поверхность S_3 на рис. 2) – растягивающие.

Максимальные значения растягивающих напряжений σ_{11} принимают у поверхности S_2 – на выходе из прямолинейного участка трубной заготовки. И они равны на конечной стадии деформирования заготовки (см. рис. 4, ε) 146 МПа. Сжимающие напряжения σ_{11} максимальные значения принимают у поверхности S_8 на выходе из прямолинейного участка трубной заготовки и соответственно равны: на промежуточной стадии деформирования заготовки (рис. 4, ε) 173 МПа, на конечной стадии деформирования заготовки (рис. 4, ε) 208 МПа.

Наиболее опасным является средний участок рассматриваемой области, где на промежуточной (см. рис. 4, δ) и конечной (см. рис. 4, ϵ) стадиях деформирования трубной заготовки у внешней стенки (поверхность S₃ на рис. 2) имеют место значительные растягивающие напряжения σ_{11} .

Нормальные напряжения σ_{22} на всех стадиях деформирования трубной заготовки во всей рассматриваемой области являются сжимающими и принимают максимальные значения на поверхности S_8 на выходе из прямолинейного участка трубной заготовки. На конечной стадии деформирования заготовки (см. рис. 4, ε) σ_{22} достигают значения 242 МПа.

На рис. 5 представлены эпюры нормальных напряжений σ_{33} . По результатам расчётов видно, что на всех стадиях деформирования заготовки на прямолинейном участке имеем сжимающие напряжения σ_{33} , которые на конце прямолинейного участка принимают максимальные значения, которые соответственно равны: на начальной стадии деформирования (см. рис. 5, *a*) 157 МПа, на промежуточной (см. рис. 5, *б*) 188 МПа и на конечной стадии (рис. 5, *в*) 216 МПа.

Рис. 5. Эпюры нормальных напряжений σ₃₃ по стадиям деформирования заготовки (*P* = 70 МПа, *P*₁ = 57 МПа, *d* = 3): а – начальная стадия деформирования; б – промежуточная стадия деформирования; в – конечная стадия деформирования

Далее вдоль трубной заготовки напряжения σ_{33} меняют знак и становятся растягивающими. Однако в области, непосредственно примыкающей к поверхности S_1 (см. рис. 2), по стадиям деформирования трубной заготовки наблюдается заметное уменьшение значений растягивающих напряжений σ_{33} . Растягивающие напряжения σ_{33} принимают максимальные значения в средней части рассматриваемой области. На конечной стадии деформирования трубной заготовки они равны 173 МПа. В работе также были выполнены эксперименты и изготовлены образцы деталей, показанные на рис. 6.

Рис. 6. Детали, изготовленные из сплавов: а – сталь 12X18H10T; б – титан ОТ-4; в – алюминиевый сплав АМГ6М

Вывод. Наиболее опасной является средняя часть рассматриваемой области, где имеются значительные растягивающие напряжения.

ЛИТЕРАТУРА

1. Ловизин, Н. С. Математическое моделирование процесса раздачи трубы гидростатическим давлением в средней её части с подпором / Н. С. Ловизин // Обозрение прикладной и промышленной математики: симпозиум по прикладной и промышленной математике: тезисы докладов. – М: ОПиПМ, 2002. – Т. 9. Вып. 1. – С. 219-220.

 Сравнительный анализ технологических методов раздачи трубчатой заготовки / С. Б. Марьин, Д. А. Потянихин, В. А. Пхьо, Ко. Х. Мин // Инженерный журнал: наука и инновации. – 2020. – № 10 (106). – С. 4.

3. Исследование совмещённых процессов при изготовлении деталей летательных аппаратов / Б. Н. Марьин [и др.] // Учёные записки Комсомольского-на-Амуре государственного технического университета. Науки о природе и технике. – 2016. – № II-1 (26). – С. 34-41.

4. Одиноков, В. И. О конечно-разностном представлении дифференциальных соотношений теории пластичности / В. И. Одиноков // Прикладная механика. – 1985. – Т. 21. – № 1. – С. 97-102.

5. Пхьо, В. А. Различные типы рабочих тел для передачи давления при раздаче трубных заготовок / В. А. Пхьо, С. Б. Марьин // Научно-техническое творчество аспирантов и студентов: материалы 47-й научно-технической конференции студентов и аспирантов / отв. ред. Э. А. Дмитриев. – Комсомольск-на-Амуре: ФГБОУ ВО «КнАГУ», 2017. – С. 903-906.

6. Maryin S. B. Working body for deformation of thin-walled pipe billets. Maryin S. B., Aung P. W. Materials Science Forum. 2018. T. 945 MSF. P. 628-633.

7. Soe K. Z. Identification of limiting deep drawing ratio using the energy criterion of fracture / Soe K. Z., Feoktistov S. I.: IOP Conference Series: Materials Science and Engineering. 2019. P. 12041.

8. Feoktistov S. I. Method for construction of forming limit diagram by using reference mechanical characteristics of the metal / Feoktistov S. I., Soe K. Z. Materials Science Forum. 2018. T. 945 MSF. P. 833-838.